Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Summary: Polyphenols are diverse and abundant carbon sources across ecosystems- having important roles in host-associated and terrestrial systems alike. However, the microbial genes encoding polyphenol metabolic enzymes are poorly represented in commonly used annotation databases, limiting widespread surveying of this metabolism. Here we present CAMPER, a tool that combines custom annotation searches with database-derived searches to both annotate and summarize polyphenol metabolism genes for a wide audience. With CAMPER, users will identify potential polyphenol-active genes and genomes to more broadly understand microbial carbon cycling in their datasets. Availability and Implementation: CAMPER is implemented in Python and is published under the GNU General Public License Version 3. It is available as both a standalone tool and as a database in DRAM v.1.5+. The source code and full documentation is available on GitHub at https://github.com/WrightonLabCSU/CAMPER.more » « less
-
Although river ecosystems constitute a small fraction of Earth’s total area, they are critical modulators of microbially and virally orchestrated global biogeochemical cycles. However, most studies either use data that is not spatially resolved or is collected at timepoints that do not reflect the short life cycles of microorganisms. To address this gap, we assessed how viral and microbial communities change over a 48-hour period by sampling surface water and pore water compartments of the wastewater-impacted River Erpe in Germany. We sampled every 3 hours resulting in 32 samples for which we obtained metagenomes along with geochemical and metabolite measurements. From our metagenomes, we identified 6,500 viral and 1,033 microbial metagenome assembled genomes (MAGs) and found distinct community membership and abundance associated with each river compartment (e.g.,Competibacteraceaein surfacewater andSulfurimonadaceaein pore water). We show that 17% of our viral MAGs clustered to viruses from other ecosystems like wastewater treatment plants and rivers. Our results also indicated that 70% of the viral community was persistent in surface waters, whereas only 13% were persistent in the pore waters taken from the hyporheic zone. Finally, we predicted linkages between 73 viral genomes and 38 microbial genomes. These putatively linked hosts included members of theCompetibacteraceae, which we suggest are potential contributors to river carbon and nitrogen cycling via denitrification and nitrogen fixation. Together, these findings demonstrate that members of the surface water microbiome from this urban river are stable over multiple diurnal cycles. These temporal insights raise important considerations for ecosystem models attempting to constrain dynamics of river biogeochemical cycles.more » « less
An official website of the United States government
